The Impact of Uncle Rewards on Selfish Mining in Ethereum

Fabian Ritz
Alf Zugenmaier

12 Munich University of Applied Sciences
2 Concordia University
Ethereum relies on a PoW-Blockchain

Ethereum features stale block inclusion

Ethereum rewards uncles and nephews

Do uncles matter in Ethereum Selfish Mining?
Overview

1 | Selfish Mining in General
2 | Ethereum
3 | Selfish Mining in Ethereum
4 | Simulator Design
5 | Simulation Results
1 | Selfish Mining in General
1 | Selfish Mining | General Model

Selfish miner:

• deviates from the crypto protocol
• is perfectly connected
• fraction of mining power α

Honest network:

• complies with the crypto protocol as intended
• is affected by network lag
• fraction of mining power β

$\alpha + \beta = 1$
• selfish miner builds a secret fork
1 | Selfish Mining | Strategy (1)

- selfish miner builds a secret fork
• selfish miner builds a secret fork
• honest network nearly catches up
• selfish miner builds a secret fork
• honest network nearly catches up

-> selfish miner publishes his fork
-> honest network adopts the longest chain and loses a block
The Impact of Uncle Rewards on Selfish Mining in Ethereum

-> applies to chains of any length
-> applies to chains of any length

-> stale blocks reduce the difficulty (long term effect)
• selfish miner tries to build a secret fork
• selfish miner tries to build a secret fork
• honest network catches up
1 | Selfish Mining | Strategy (3)

- selfish miner tries to build a secret fork
- honest network catches up

\[
\gamma: \text{fraction of honest network mining on selfish miner’s fork in case of ties}
\]

\[
\rightarrow \text{selfish miner publishes his fork}
\]

\[
\rightarrow \text{honest network’s mining power gets diverted}
\]
• selfish miner extends his fork

-> honest network loses a block
1 | Selfish Mining | Strategy (4)

- selfish miner extends his fork
- honest network extends selfish miner’s fork

-> honest network loses a block
• selfish miner extends his fork
• honest network extends selfish miner’s fork
-> honest network loses a block

• honest network extends its fork
-> selfish miner loses a block
2 | Ethereum
Ethereum blockchain:

- extended by miner nodes
- secured by Proof-of-Work performed in ETHash
- consensus rule: longest chain
- random tie breaking
Byzantinum (October 2017):

- latest of 7 hard forks
- 15 seconds average block time*
- 16% stale blocks (during March 2018)*
Referencing block (*nephew*):

- regular block (part of the main chain)
- at most 2 references
- 1/32 block reward per reference
Referenced block (*uncle*):

- direct descendant of a regular block
- at least 1, at most 6 blocks in the past
- at most 7/8, at least 2/8 block reward
- counted as regular block within difficulty calculation*

Byzantinum
b1a: first generation uncle (7/8 block reward)
b2b: second generation uncle (6/8 block reward)
b3b: stale block (no reward)
Uncles might change a lot of situations...
3 | Selfish Mining in Ethereum
3 | Selfish Mining | Stale Block Inclusion (1)
-> stale block inclusion reduces the risk of losing single blocks
3 | Selfish Mining | Stale Block Inclusion (2)
3 | Selfish Mining | Stale Block Inclusion (2)

-> stale block inclusion does not help (much) in case of long forks
• due to random tie breaking: \(y = \frac{1}{\text{number of competing chains}} \)

• uncles affect difficulty calculation*

• uncles slow the growth of the public chain

*Byzantinum
• selfish miner has a secret fork
• selfish miner has a secret fork
• honest network creates a new fork

-> selfish miner maintains lead
-> problematic if selfish miner starts a new fork
• selfish miner publishes a secret fork
3 | Selfish Mining | Stale Block Generation (2)

- selfish miner publishes a secret fork
- honest network forks the published fork

→ selfish miner might lose a single block
• selfish miner publishes a secret fork
• honest network extends the formerly stale branch

-> selfish miner might lose an entire fork
4 | Simulator Design
Stale blocks need to be generated:

- by the honest network
- at a certain ratio δ

Stale blocks need to be referenced:

- with a probability of $1/3$ per slot (observed during November 2017)
- according to strategies:
 - selfish miner -> own blocks
 - honest network -> any blocks
Monte Carlo Simulation with discrete block generation events:

\(\alpha \) the selfish miner mines a block

\(\beta \) the honest network mines a block which is a

\(\beta \cdot \delta \) stale block

\(\beta - (\beta \cdot \delta) \) regular block
Relative revenue ratio (RRR):
• a party’s fraction of all mining rewards

Problem:
• selfish mining causes additional stale blocks
• stale blocks eventually become uncle blocks
• uncle blocks lower the overall mining rewards*

Absolute revenue ratio (ARR):
• takes lowered mining rewards into account

*Byzantinum
Relative block ratio (RBR):

- ratio of a party’s regular blocks to all regular blocks
- measures control over the blockchain

Relative network security (RNS):

- ratio of all regular blocks to all blocks
- measures the computational power that secures the blockchain
5 | Simulation Results
5 | Simulation Results | Absolute Revenue

The Impact of Uncle Rewards on Selfish Mining in Ethereum

- **selfish** \(\delta = 0.00 \)
 - include own uncles
- **selfish** \(\delta = 0.12 \)
 - include own uncles
- **selfish** \(\delta = 0.24 \)
 - include own uncles
- **honest** \(\delta = 0.12 \)
 - include all uncles

![Graph showing the relationship between selfish miner's fraction of mining power and absolute revenue ratio (ARR).](image-url)

- The x-axis represents the selfish miner's fraction of mining power, ranging from 0.10 to 0.45.
- The y-axis represents the selfish miner's absolute revenue ratio (ARR), ranging from 0.0 to 1.0.
- Lines indicate different scenarios:
 - Green line for selfish \(\delta = 0.00 \) with own uncles included.
 - Green dashed line for selfish \(\delta = 0.12 \) with own uncles included.
 - Green double-dashed line for selfish \(\delta = 0.24 \) with own uncles included.
 - Orange line for honest \(\delta = 0.12 \) with all uncles included.

Legend:
- Green line: selfish \(\delta = 0.00 \) include own uncles
- Green dashed line: selfish \(\delta = 0.12 \) include own uncles
- Green double-dashed line: selfish \(\delta = 0.24 \) include own uncles
- Orange line: honest \(\delta = 0.12 \) include all uncles
5 | Simulation Results | Break Even of Profitability

The Impact of Uncle Rewards on Selfish Mining in Ethereum

selfish miner's abs. revenue ratio ARR

selfish miner's fraction of mining power α

- honest $\delta=0.24$
 - include all uncles
- selfish $\delta=0.24$
 - include own uncles
- honest $\delta=0.12$
 - include all uncles
- selfish $\delta=0.12$
 - include own uncles

0.14 0.17 0.20 0.23 0.26

0.185 0.225
5 | Simulation Results | Blockchain Control

The impact of uncle rewards on selfish mining in Ethereum.

The diagram shows the relationship between the selfish miner's fraction of mining power (α) and the selfish miner's regular block ratio (RBR). The x-axis represents α, ranging from 0.10 to 0.45, and the y-axis represents RBR, ranging from 0.0 to 1.0.

- The green line with a dotted style represents a selfish miner with $\delta=0.00$, including own uncles.
- The green line with a solid style represents a selfish miner with $\delta=0.12$, including own uncles.
- The green line with a dashed style represents a selfish miner with $\delta=0.24$, including own uncles.
- The orange line represents a threshold of $0.5 + \varepsilon$ attack.
- The gray line represents a honest miner with $\delta=0.12$, including all uncles.

At $\alpha=0.35$, the selfish miner's RBR reaches 0.34, indicating a significant impact on the stability of the blockchain.
The Impact of Uncle Rewards on Selfish Mining in Ethereum

5 | Simulation Results | Network Security

- **selfish δ=0.00**
 - include own uncles

- **selfish δ=0.12**
 - include own uncles

- **selfish δ=0.24**
 - include own uncles

- **honest δ=0.12**
 - include all uncles

![Graph showing relative network security (RNS) vs. selfish miner's fraction of mining power (α).]
5 | Simulation Results | Summary

1) selfish mining becomes profitable at $\alpha = 0.185$ if $\delta = 0.24$

2) selfish miner controls the blockchain with $\alpha = 0.34$ if $\delta = 0.24$

3) selfish mining diverts mining power from securing the blockchain
Uncles matter in Ethereum Selfish Mining!
Related Work

• Eyal and Sirer: Majority is not Enough - Bitcoin Mining is Vulnerable (2013)
• Sapirshtein et al.: Optimal Selfish Mining Strategies in Bitcoin (2015)
Questions?
6 | Backup
A mining party within the network tries to receive a share of the revenue larger than its share of mining power by temporary withholding blocks.
6 | Ethereum | Contracts and Network

• (smart) contracts / code
 • turing-complete capabilities
 • executed by every node via the Ethereum Virtual Machine (EVM)
 • execution requires gas paid in Ether (ETH)

• network
 • peer-to-peer-structure
 • kademlia-based
 • currently 16.000 nodes
The Impact of Uncle Rewards on Selfish Mining in Ethereum
ARR = \frac{nb(p,r) + nb(p,u)}{nb(a,r) + nb(a,u)} \cdot \frac{rev(p)}{nb(p,r) + nb(p,u)} = \frac{rev(p)}{nb(a,r) + nb(a,u)}

nb(p,r) = \text{number of a party’s regular blocks}

nb(p,u) = \text{number of a party’s uncle blocks}

nb(a,r) = \text{number of all regular blocks}

nb(a,u) = \text{number of all uncle blocks}

rev(p) = \text{party’s normalized total revenue, reward per regular block = 1}
• **smart data structure as a blockchain**
 - keeps track of all blocks
 - validates rules (e.g. stale block references)

• **helpers for (complex) problems**
 - find uncle candidates
 - find positions for stale blocks
 - evaluate the blockchain
onSelfFindsBlock() {
 if (secretFork.length() > 0) {
 secretFork.add(newBlock);
 } else {
 secretFork = new Fork(publicChain).add(newBlock);
 }
}
onOthersFindBlock() {
 if (secretFork.height() - publicChain.height() < 2) {
 secretFork.publish();
 }
}
For every parameter combination α, δ and mining strategy:

- 100 blockchains (random walks) with 2^{17} blocks (steps)
- mean values and standard deviation σ per quantity of interest
- acceptance of mean values
 - for $0.15 < \alpha < 0.30$: $\sigma < 0.001$
 - for any other α: $\sigma < 0.01$

\rightarrow accuracy +/- 0.015 near the break even of profitability
6 | If Ethereum Weighted Uncles

weight of sample chains without weighted uncles

weight of sample chains with weighted uncles

green = attacker’s secret fork
black = public chain

Fabian Ritz
The Impact of Uncle Rewards on Selfish Mining in Ethereum